RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Forthcoming seminars
Seminar calendar
List of seminars
Archive by years
Register a seminar

Search
RSS
Forthcoming seminars





You may need the following programs to see the files








Steklov Mathematical Institute Seminar
November 20, 2003, Moscow, Steklov Mathematical Institute of RAS, Conference Hall (8 Gubkina)
 


On the cardinality of the exceptional set in a binary additive problem of Goldbach type

G. I. Arkhipov

Number of views:
This page:122

Abstract: The conjecture that every sufficiently large even natural number $2n$ can be represented in the form $2n=p+q$, where $p$ and $q$ are prime, is called the binary Goldbach problem, which so far remains unproved. Up to now, it has been established by the Vinogradov method that among the even numbers less than $x$, there are at most $Cx^{0.95}$ exceptional numbers, that is, ones that cannot be represented as the sum of two primes (here $C>0$ is an absolute constant). For the analogous problem of representing a natural number m in the form $m=[ap]+[bq]$, where $p$ and $q$ are prime and $a/b$ is an algebraic number, G. I. Arkhipov and V. N. Chubarikov have proved that the number of $m<x$ not so representable is bounded above by $C(\varepsilon)x^{2/3+\varepsilon}$, where $\varepsilon>0$ is arbitrary. Questions related to this result were considered in the lecture.

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017