RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Forthcoming seminars
Seminar calendar
List of seminars
Archive by years
Register a seminar

Search
RSS
Forthcoming seminars





You may need the following programs to see the files








Steklov Mathematical Institute Seminar
March 15, 2001, Moscow, Steklov Mathematical Institute of RAS, Conference Hall (8 Gubkina)
 


A cycle of work on the theory of regular decompositions of spaces

S. S. Ryshkov, M. I. Shtogrin, N. P. Dolbilin

Number of views:
This page:163

Abstract: A famous theorem of Voronoi states that for each primitive parallelohedron there is an affinely equivalent Dirichlet–Voronoi parallelohedron (existence theorem). Ryshkov proved that such a DirichletVoronoi parallelohedron is unique up to similarity (uniqueness theorem).
He also proved that for each type of $n$-dimensional parallelohedron there are a finite number of so-called root (basic) parallelohedra of dimension at most $n$ and arranged in $\mathbf E^n$ in such a way that each parallelohedron of the indicated type is representable up to an affine transformation as a Minkowski sum with non-negative coefficients of these root parallelohedra. From a slight refinement of this result it follows, for example, that up to an affine transformation each fourdimensional parallelohedron can be decomposed into such a sum of a regular 24-hedron and its edges (Ryshkov).
It was proved that for a space of constant curvature and arbitrary dimension and for any discrete group of motions of it having a compact fundamental domain there are only finitely many combinatorial types of regular Dirichlet–Voronoi decompositions (Shtogrin).
So-called polycycles, which have important applications, were investigated. A polycycle is defined to be a cellular decomposition of the disk that admits a continuous locally homeomorphic cellular map to a Platonic decomposition of the sphere, the Euclidean plane, or the Lobachevskii plane. A criterion was established for a given graph to be the edge skeleton of some polycycle (Shtogrin).
It was shown that a simply connected $d$-dimensional space of constant curvature has a regular decomposition into polyhedra congruent to a given convex polyhedron $P$ if and only if around $P$ one can construct from polyhedra congruent to it a so-called $(d-2)$-corona having a certain radius and satisfying two specific conditions (the condition of stability of the corona group and the condition of local compatibility) (Dolbilin).
It was shown that if a family of decompositions of a space (Euclidean or Lobachevskii) with a finite protoset and with a certain local rule is at most countable, then among these decompositions at least one is crystallographic. This theorem generalizes known results on uncountability of socalled aperiodic families (Dolbilin).

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017