RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Forthcoming seminars
Seminar calendar
List of seminars
Archive by years
Register a seminar

Search
RSS
Forthcoming seminars





You may need the following programs to see the files








Seminar on analytic theory of differential equations
December 23, 2015 14:30, Moscow, Steklov Mathematical Institute, Room 440 (8 Gubkina)
 


A lower estimate of a minival eigenvalue of a Sturm-Liuville problem with boundary conditions of the second type

A. A. Vladimirov

Number of views:
This page:75

Abstract: We prove that the infinum $m_\gamma$ of minimal eigenvalues fot the problem
$ -y"+qy=\lambda y$, $y'(0)=y'(1)=0$,
can be attained. Here non-negative potential $q\in L_1[0,1]$ runs through the unit sphere in the space $L_\gamma[0,1]$, where $\gamma\in (0,1)$. We prove also the equality $m_\gamma=1$ for $\gamma\leqslant 1-2\pi^{2}$ and the inequality $m_\gamma<1$in the opposite case

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017