RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Forthcoming seminars
Seminar calendar
List of seminars
Archive by years
Register a seminar

Search
RSS
Forthcoming seminars





You may need the following programs to see the files








Seminar on Complex Analysis (Gonchar Seminar)
February 15, 2016 17:00, Moscow, Steklov Mathematical Institute, Room 411 (8 Gubkina)
 


Complex rotation numbers

N. B. Goncharuk

Independent University of Moscow

Number of views:
This page:153

Abstract: Take a cylinder of height $h$ and glue its boundary circles via the rotation by angle $a$. We get a torus with inherited complex structure. The modulus of this elliptic curve is $a+ih$. Now, let us glue the boundary circles of the cylinder via some analytic circle diffeomorphism $f$ instead of the rotation. Once again, we get an elliptic curve. What happens to its modulus as $h$ tends to $0$? (this problem and this construction were suggested by V. I. Arnold, 1978). The answer depends on the dynamical properties of the circle diffeomorphism $f$ and is related to its rotation number. This answer leads to a new interesting set (“bubbles”), analogue of Arnold tongues. The talk is devoted to a description of the bubbles.

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017