Forthcoming seminars
Seminar calendar
List of seminars
Archive by years
Register a seminar

Forthcoming seminars

You may need the following programs to see the files

Quantum physics and quantum information
May 17, 2016 11:00, Moscow

Emergence of stochastic quasi-classical wavefunction of the Universe from the third quantization procedure

P. B. Ivanovab

a Astro Space Center, Lebedev Physical Institute, Russian Academy of Sciences
b University of Cambridge, Department of Applied Mathematics and Theoretical Physics
PowerPoint 1.1 Mb

Number of views:
This page:214
Youtube Video:

P. B. Ivanov
Photo Gallery

Abstract: We study quantized solutions to the Wheeler de Witt (WdW) equation describing a closed Friedmann-Robertson-Walker universe with a Λ term and a set of massless scalar fields. We show that when Λ ≪1 in the natural units and the standard in-vacuum state is considered, either wave function of the universe, Ψ , or its derivative with respect to the scale factor, a , behave as random quasiclassical fields at sufficiently large values of a. The former case is realized when 1 ≪a ≪e2/3 Λ , while the latter is valid when a ≫e2/3 Λ . The statistical rms value of the wave function is proportional to the Hartle-Hawking wave function. Alternatively, the behavior of our system at large values of a can be described in terms of a density matrix corresponding to a mixed state, which is directly determined by statistical properties of Ψ. We suppose that a similar behavior of Ψ can be found in all models exhibiting copious production of excitations with respect to the out-vacuum state associated with classical trajectories at large values of a. Thus, the third quantization procedure may provide a "boundary condition" for classical solutions to the WdW equation. Contrary to the previous proposals, in our case either Ψ can be regarded as a stochastic classical quantity or the system can be viewed as being in a mixed state defined over classical solutions to the WdW equation.

Presentation: ivanov_qpqi_17_05_2016.ppt (1.1 Mb)

SHARE: FaceBook Twitter Livejournal
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021