Forthcoming seminars
Seminar calendar
List of seminars
Archive by years
Register a seminar

Forthcoming seminars

You may need the following programs to see the files

Colloquium of the Steklov Mathematical Institute of Russian Academy of Sciences
November 3, 2016 16:00, Moscow, Steklov Mathematical Institute of RAS, Conference Hall (8 Gubkina)

Topology of real algebraic three-dimensional manifolds

Frédéric Mangolte

Université d'Angers
Video records:
MP4 3,065.1 Mb
MP4 777.6 Mb

Number of views:
This page:486
Video files:123
Youtube Video:

Frédéric Mangolte
Photo Gallery

Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: We know since Nash (1952) and Tognoli (1973) that any compact smooth manifold M admits a real algebraic model. Namely, given a manifold M, there exists polynomials with real coefficients whose locus of common real zeroes is diffeomorphic to M. Bochnak and Kucharz proved later that there exists in fact an infinite number of distinct models for a given M. We try therefore to find “simpler” algebraic models than the others in a meaning to be specified. In this talk, I will describe the state-of-the-art concerning this research program about “simple” real algebraic models for low-dimensional varieties.
The situation for curves and surfaces is quite well understood now, and the surface case is already interesting. For real algebraic threefolds, János Kollár opened in 1999 a direction of research thanks to his solution of Minimal Model Program over the reals. We will discuss several Kollár’s conjectures solved since then.

Language: English

SHARE: FaceBook Twitter Livejournal
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019