RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Forthcoming seminars
Seminar calendar
List of seminars
Archive by years
Register a seminar

Search
RSS
Forthcoming seminars





You may need the following programs to see the files








Seminar on analytic theory of differential equations
November 23, 2016 14:30, Moscow, Steklov Mathematical Institute, Room 440 (8 Gubkina)
 


Analytic continuation of algebraic functions by using Hermite–Padé polynomials of first kind

A. V. Komlov
Video records:
MP4 2,507.3 Mb
MP4 637.3 Mb

Number of views:
This page:123
Video files:19

A. V. Komlov


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: Let $f$ be an algebraic function and $f_0$ some its germ at a point $x_0$. A natural question is how and in what domain can one reconstruct the values of the initial function $f$ by its germ $f_0$? All rational approximants, the Padé approximants for example, reconstruct the initial function $f$ in those domains where the germ $f_0$ can be continued as a singlevalued holomorphic function. But our function $f$ is multivalued. How does one reconstruct the other values of $f$?
In the talk we will consider the reconstruction of the values of $f$ by using Shafer quadratic approximants. These approximants are built by the Hermite–Padé polynomials of first kind, which naturally generalize the Padé polynomials. We will see that in the case of a three-valued function $f$, Shafer quadratic approximants reconstruct at once two values of $f$ at every point of the plane.

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017