RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
Forthcoming seminars
Seminar calendar
List of seminars
Archive by years
Register a seminar

Search
RSS
Forthcoming seminars





You may need the following programs to see the files








General Mathematics Seminar of the St. Petersburg Division of Steklov Institute of Mathematics, Russian Academy of Sciences
February 20, 2017 13:00, St. Petersburg, POMI, room 311 (27 Fontanka)
 


An application of Galois theory to the optimal control

D. D. Kiselev

All-Russian Academy of International Trade
Video records:
MP4 535.7 Mb
MP4 2,108.0 Mb

Number of views:
This page:340
Video files:162

D. D. Kiselev


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: Define the Zelikin-Lokutsievskiy polynom $f_n(x)$ with integer coefficients of degree $n-1$ as follows
$$ xf_n(x^2)=\mathrm{Im} (ix+1)\ldots(ix+2n). $$

We show the irreducibility of $f_{(q-1)/2}(x)$ over $\mathbb Q$ for any prime $q>3$. We calculate the Galois group of the polynom $f_n(x)$, when the numbers $p=n-1$, $q=2n+1$, $r=2n+7$ are prime and $889$ is not a square modulo $r$. We also show under irreducibility hypothesis of the polynom $f_{p+1}(x)$ over $\mathbb Q$ for almost all primes $p$ that there exists an infinite sequence of natural $n$, for which $A_{n-1}$ is embeddable into $\mathrm{Gal}_{\mathbb Q}(f_n(x))$.
An example: for any natural $k<808$ there exists an optimal control problem, the optimal control of which throws a dense winding of the $k$-dimensional torus in finite time.

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020