RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Forthcoming seminars
Seminar calendar
List of seminars
Archive by years
Register a seminar

Search
RSS
Forthcoming seminars





You may need the following programs to see the files








Geometric Topology Seminar
March 23, 2017 14:00, Moscow, Math Department of the Higher School of Economics, Room 108
 


Eliminating higher-multiplicity intersections in the metastable dimension range

A. B. Skopenkov

Number of views:
This page:23

Abstract: The $r$-fold analogues of Whitney trick were ‘in the air’ since 1960s. However, only in 2010s they were stated, proved and applied to obtain interesting results, most notably by Mabillard and Wagner. Here we prove and apply a version of the $r$-fold Whitney trick when general position $r$-tuple intersections have positive dimension.
Theorem. {\it Assume that $D=D_1\sqcup\ldots\sqcup D_r$ is disjoint union of $n$-dimensional disks, $f:D\to B^d$ a proper PL (smooth) map such that $f\partial D_1\cap\ldots\cap f\partial D_r=\emptyset$ and $rd\ge (r+1)n+3$. If the map
$$f^r:\partial(D_1\times\ldots\times D_r)\to (B^d)^r-\{(x,x,\ldots,x)\in(B^d)^r | x\in B^d\}$$
extends to $D_1\times\ldots\times D_r$, then there is a PL (smooth) map $\overline f:D\to B^d$ such that
$$\overline f=f \quadon\quad D_r\cup\partial D\quadand\quad \overline fD_1\cap\ldots\cap \overline fD_r=\emptyset.$$
} range

Language: English

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017