RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Forthcoming seminars
Seminar calendar
List of seminars
Archive by years
Register a seminar

Search
RSS
Forthcoming seminars





You may need the following programs to see the files








Seminar on Complex Analysis (Gonchar Seminar)
September 25, 2017 17:00, Moscow, Steklov Mathematical Institute, Room 411 (8 Gubkina)
 


Adiabatic limit in Yang–Mills equations on $\mathbb R^4$

A. G. Sergeev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Number of views:
This page:35

Abstract: The harmonic spheres conjecture relates Yang–Mills fields on $\mathbb R^4$ with gauge group $G$ with harmonic maps of the Riemann sphere $S^2$ into the loop space $\Omega G$ of the group $G$. This conjecture is a generalization to arbitrary Yang–Mills $G$-fields of Atiyah–Donaldson theorem establishing a $1$$1$ correspondence between the moduli space of $G$-instantons on $\mathbb R^4$ and the space of based holomorphic maps $S^2\to\Omega G$.
In our talk we shall consider a possible way to prove the harmonic spheres conjecture using the adiabatic limit construction for the Yang–Mills equations on $S^4$ proposed by A. D. Popov. The Popov construction employs a nice parameterization of the sphere $S^4\setminus S^1$ without a circle, found by Jarvis and Norbury. Using this parameterization it is possible to associate in a natural way with arbitrary Yang–Mills $G$-field on $S^4$ a harmonic map of the sphere $S^2$ into the loop space $\Omega G$.

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017