RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Forthcoming seminars
Seminar calendar
List of seminars
Archive by years
Register a seminar

Search
RSS
Forthcoming seminars





You may need the following programs to see the files








Automorphic forms and their applications
May 21, 2018 17:40, Moscow
 


Free algebras of the Hilbert modular forms

E. S. Stuken

National Research University Higher School of Economics, Moscow

Number of views:
This page:12

Abstract: Let $d>0$ be square-free integer and $L_d$ be the Hilbert lattice, i.e. the even lattice of signature (2, 2) such that $L_d=\begin{pmatrix}0 & 1
1 & 0\end{pmatrix} \oplus \begin{pmatrix} 2 & 1
1 & \frac{1-d}{2}\end{pmatrix}$ when $d=1 \pmod{4}$, or $L_d = \begin{pmatrix}0 & 1
1 & 0 \end{pmatrix} \oplus \begin{pmatrix} 2 & 0
0 & -2d \end{pmatrix}$ when $d=2,3\pmod{4}$. Consider $\Gamma_d=O^+(L_d)$ and denote by $A(\Gamma_d)$ the algebra of $\Gamma_d$-automorphic forms. The main goal of the report is the following Theorem: If the algebra $A(\Gamma_d)$ is free then $d \in \{2,3,5,6,13,21\}$.

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018