RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Forthcoming seminars
Seminar calendar
List of seminars
Archive by years
Register a seminar

Search
RSS
Forthcoming seminars





You may need the following programs to see the files








Iskovskikh Seminar
October 7, 2010 18:30, Moscow, Steklov Mathematical Institute, room 540
 


Weak Landau–Ginzburg models for Fano varieties

V. V. Przyjalkowski

Number of views:
This page:98

Abstract: We are going to give a survey of weak Landau–Ginzburg models theory. Due to mirror symmetry conjecture of Hodge structures variations each Fano variety has a dual Landau–Ginzburg model — one-parameterized family of varieties with trivial canonical classes. Periods of such family correspond to come numerical invariants of the initial Fano variety, that is, Gromov–Witten invariants (numbers counting rational curves on the Fano variety). This family is called a weak Landau–Ginzburg model if its total space is a multiplicative torus. In this case the mirror conjecture can be reduced to a quantitative level. We are going to overview some of known weak Landau–Ginzburg models, their conections one to each other, and their connections with some properties of initial Fanos such as Hodge numbers or toric degenerations. A series of open problems are going to be told about.

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017