RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Forthcoming seminars
Seminar calendar
List of seminars
Archive by years
Register a seminar

Search
RSS
Forthcoming seminars





You may need the following programs to see the files








Seminar of the Department of Algebra
November 30, 2010 15:00, Moscow, Steklov Mathematical Institute, Room 540 (8 Gubkina)
 


The automorphism group of a flexible affine variety is infinitely transitive (joint work with H. Flenner, S. Kaliman, F. Kutzschebauch and M. Zaidenberg)

Ivan Arzhantsev

Number of views:
This page:96

Abstract: Given an affine algebraic variety $X$ of dimension $n\ge 2$, we let $\mathrm{SAut}(X)$ denote the special automorphism group of $X$ i.e., the subgroup of the full automorphism group $\mathrm{Aut}(X)$ generated by all one-parameter unipotent subgroups. We show that if $\mathrm{SAut}(X)$ is transitive on the smooth locus $X_{\mathrm{reg}}$ then it is infinitely transitive on $X_{\mathrm{reg}}$. In turn, the transitivity is equivalent to the flexibility of $X$. The latter means that for every smooth point $x\in X$ the tangent space $T_xX$ is spanned by the velocity vectors at $x$ of one-parameter unipotent subgroups of $\mathrm{Aut}(X)$. So we obtain the result announced in the title. We also deduce different variations and applications.

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017