RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
Forthcoming seminars
Seminar calendar
List of seminars
Archive by years
Register a seminar

Search
RSS
Forthcoming seminars





You may need the following programs to see the files








St. Petersburg Logic seminar
June 16, 2020 18:30, St. Petersburg, online
 


An Extension of Connexive Logic C

H. Wansing

Ruhr-Universität Bochum
Video records:
MP4 159.4 Mb
Materials:
Adobe PDF 359.3 Kb

Number of views:
This page:146
Video files:3
Materials:3
Youtube Video:

H. Wansing


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке



Abstract: The connexive logic $\mathsf{C}$ is a simple variant of Nelson's Logic $\mathsf{N4}$, obtained by making a small change in the falsification clause for the conditional. This was an important step marked in the field of connexive logic since $\mathsf{C}$ can be seen as the first system of connexive logic with an intuitively plausible semantics. The aim of the present paper is to consider an extension of $\mathsf{C}$ obtained by adding the law of excluded middle with respect to the strong negation. The extension of $\mathsf{C}$ is motivated by three questions. The first question comes from a system $\mathsf{CN}$ devised by John Cantwell. The second question concerns how many more connexive theses, beside the basic theses of Aristotle and Boethius, can be captured within the framework suggested in the above paper. The third question addresses the relation between constructivity and the law of excluded middle. We will show that the quantified version of our extension of $\mathsf{C}$ satisfies the Existence Property and its dual, but fails to satisfy the Disjunction Property and its dual when the law of excluded middle is restricted to atomic formulas.


Based on joint work with Hitoshi Omori.

Materials: wansing_spb_2020_slides.pdf (359.3 Kb)

Language: English

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020