RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
Forthcoming seminars
Seminar calendar
List of seminars
Archive by years
Register a seminar

Search
RSS
Forthcoming seminars





You may need the following programs to see the files








Seminars "Proof Theory" and "Logic Online Seminar"
December 14, 2020 18:30, Steklov Mathematical Institute, Moscow, online via Zoom
 


Cyclic Henkin Logic

A. Visser

Utrecht University
Video records:
MP4 481.0 Mb

Number of views:
This page:73
Video files:8
Youtube Video:

A. Visser


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке



Abstract: We present a general version of the second incompleteness theorem G2. In this version we consider certain predicates semi-numerating the axiom set of the given theory that do not necessarily support the verification of the third Löb Condition: provable implies provably provable.
Cyclic Henkin Logic (CHL) is a provability logic that is valid for arithmetical interpretations whenever the conditions for the above version of G2 apply. The logic is, in first approximation, K plus Löb’s Rule plus Fixed Points. The logic has many good properties. For example, the de Jongh-Sambin-Bernardi Theorem holds in the CHL. We realise the idea of `Fixed Points’ by employing a syntax on cyclic graphs. We will sketch how this works and briefly indicate how arithmetical interpretation of a graph works (even modulo bisimulation). CHL turns out to be mutually interpretable with the mu-Calculus plus the minimal Henkin Fixed Point. As a consequence, one has, for example, a completeness theorem for CHL in finite acyclic Kripke models and uniform interpolation.

Language: English

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021