Forthcoming seminars
Seminar calendar
List of seminars
Archive by years
Register a seminar

Forthcoming seminars

You may need the following programs to see the files

Steklov Mathematical Institute Seminar
February 26, 2009 16:00, Moscow, Steklov Mathematical Institute of RAS, Conference Hall (8 Gubkina)

Blow-up theory for nonlinear partial differential equations. Critical nonlinearities

S. I. Pokhozhaev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Video records:
Real Video 223.9 Mb
Windows Media 234.1 Mb
Flash Video 241.3 Mb
MP4 241.3 Mb
Adobe PDF 154.5 Kb

Number of views:
This page:1518
Video files:514
Youtube Video:

S. I. Pokhozhaev
Photo Gallery

Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: Global analysis of nonlinear partial differential equations reveals existence of critical nonlinearities determined by corresponding growth rates.
These critical exponents depend on the structure and order of the differential operator, space dimension, singularity of the coefficients, and on the data of the problem for the corresponding equation.
It turns out that if the nonlinearity belongs to the critical range, then each solution of the corresponding problem necessarily blows up, i.e., a catastrophe occurs in finite time or outside of a certain volume, irrespectively of boundary conditions.
Later it was established that the regularity of the solutions also depends on the critical exponents of the nonlinearities.
The first results in this direction were obtained by:
  • for elliptic equations in 1965 (S. I. Pohozaev), 1981 (B. Gidas and J. Spruck),
  • for parabolic equations in 1966 (H. Fujita),
  • for hyperbolic ones in 1979 (F. John), 1980 (T. Kato).

In this talk we consider a new approach to the study of nonlinearities based on the concept of nonlinear capacity generated by the nonlinear operator.
As applications we demonstrate concrete examples, including those from nonlinear mathematical physics, such as the Kuramoto-Sivashinsky equation.

Materials: v305.pdf (154.5 Kb)

SHARE: FaceBook Twitter Livejournal
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017