RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Forthcoming seminars
Seminar calendar
List of seminars
Archive by years
Register a seminar

Search
RSS
Forthcoming seminars





You may need the following programs to see the files








Steklov Mathematical Institute Seminar
March 19, 2009 16:00, Moscow, Steklov Mathematical Institute of RAS, Conference Hall (8 Gubkina)
 


Quantum systems, channels, information

A. S. Holevo
Video records:
Real Video 229.0 Mb
Windows Media 239.3 Mb
Flash Video 276.6 Mb
MP4 276.6 Mb

Number of views:
This page:1382
Video files:559
Youtube Video:

A. S. Holevo
Photo Gallery



Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке



Abstract: The mathematical tradition in the information theory goes back to A. N. Kolmogorov and A. Ya. Khintchine. For a mathematician, the information theory is a source of fresh ideas and hard problems with decent motivation. This applies also to quantum information theory — a new scientific discipline studying the general laws of transmission, storage and transformation of information in the systems obeying quantum mechanics. Its problematic is closely related to the fundamental structures of positivity and tensor product in operator algebras, noncommutative probability theory, and asymptotic methods of random matrices. One of the difficult analytical problems of quantum information theory is the “additivity hypothesis” which was discussed at the International Congress of Mathematicians in 2006 and at the European Congress of Mathematicians in 2008.
The talk will highlight the following issues:
  • The general concept of the channel as a morphism of the category of $C^*$-algebras;
  • Non-commutative analogue of the Shannon coding theorem;
  • The additivity problem for the channel capacity and entanglement of quantum states;
  • The structure of entanglement-breaking channels.

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
  •  
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017