Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Forthcoming seminars
Seminar calendar
List of seminars
Archive by years
Register a seminar

Search
RSS
Forthcoming seminars






Knots and Representation Theory
September 6, 2021 18:30, Moscow
 


Kirby diagrams and 5-colored graphs representing compact 4-manifolds

Maria Rita Casali

Number of views:
This page:25

Abstract: It is well-known that any framed link (L,c) uniquely represents the 3-manifold M3(L,c) obtained from S3 by Dehn surgery along (L,c), as well as the PL 4-manifold M4(L,c) obtained from D4 by adding 2-handles along (L,c). Moreover, if trivial dotted components are also allowed (i.e. in case of a Kirby diagram (L(*),c)), the associated PL 4-manifold M4(L(*),c) is obtained from D4 by adding 1-handles along the dotted components and 2-handles along the framed components.
In the present talk we present the relationship between framed links and/or Kirby diagrams and the so called crystallization theory, which represents compact PL manifolds of arbitrary dimension by regular edge-colored graphs: in particular, we describe how to construct a 5-colored graph representing M4(L(*),c), directly drawn over a planar diagram of (L(*), c).
As a consequence, the combinatorial properties of Kirby diagrams yield upper bounds for both the graph-defined invariants gem-complexity and generalized regular genus of the associated 4-manifold.

Language: English

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022