Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Forthcoming seminars
Seminar calendar
List of seminars
Archive by years
Register a seminar

Search
RSS
Forthcoming seminars






Shafarevich Seminar
September 21, 2021 15:00, Moscow, Steklov Mathematical Institute, Room. 104 (8 Gubkina) + Zoom
 


Quantum cohomology as a deformation of symplectic cohomology

U. Varolgunes

University of Edinburgh
Video records:
MP4 3,573.1 Mb

Number of views:
This page:124
Video files:32


Видео не загружается в Ваш браузер:
  1. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  2. Сообщите администратору портала о данной ошибке

Abstract: Consider a positively monotone (Fano) closed symplectic manifold $M$ and a symplectic simple crossings divisor $D$ in it. Assume that the Poincare dual of the anti-canonical class is a positive rational linear combination of the classes $[D_i]$, where $D_i$ are the components of $D$ with their symplectic orientation. A choice of such coefficients, called the weights, (roughly speaking) equips $M-D$ with a Liouville structure. I will start by discussing results relating the symplectic cohomology of $M-D$ with quantum cohomology of $M$. These results are particularly sharp when the weights are all at most 1 (hypothesis A). Then, I will discuss certain rigidity results (inside $M$) for skeleton type subsets of $M-D$, which will also demonstrate the geometric meaning of hypothesis A in examples. The talk will be mainly based on joint work with Strom Borman and Nick Sheridan.

Language: English

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022