

2022ary quasigroups and related topics
September 24, 2021 11:00–12:30, Novosibirsk, Sobolev Institute of Mathematics, room 135






Embedding in MDS codes and Latin cubes
V. N. Potapov^{} 
Number of views: 
This page:  26 

Abstract:
An embedding of a code is a mapping that preserves distances between codewords. We prove that any code with code distance $\rho$ and code length $d$ can be embedded into an MDS code with the same code distance and code length but with larger alphabet.
References

T. Evans, “Embedding incomplete Latin squares”, Amer. Math. Monthly, 67:10 (1960), 958–961

A. B. Cruse, “On the finite completion of partial Latin cubes”, J. Combinatorial Theory Ser. A, 17:1 (1974), 112–119

C. C. Lindner, “Embedding orthogonal partial Latin squares”, Proc. Amer. Math. Soc., 59:1 (1976), 184–186

D. M. Donovan, E. S. Yazici, “A polynomial embedding of pairs of orthogonal partial Latin squares”, J. Combin. Theory Ser. A, 126 (2014), 24–34

D. M. Donovan, M. Grannell, E. Sule Yazici, “Constructing and embedding mutually orthogonal Latin squares: reviewing both new and existing results”, Comment. Math. Univ. Carolin., 61:4 (2020), 437–457

D. S. Krotov, E. V. Sotnikova, “Embedding in $q$ary $1$perfect codes and partitions”, Discrete Math., 338:11 (2015), 1856–1859

J. Denes, A. D. Keedwell, Latin squares. New development in the theory and applications, Annals of Discrete Mathematics, 46, NorthHolland, 1991

