Forthcoming seminars
Seminar calendar
List of seminars
Archive by years
Register a seminar

Forthcoming seminars

You may need the following programs to see the files

Steklov Mathematical Institute Seminar
December 24, 2009 17:00, Moscow, Steklov Mathematical Institute of RAS, Conference Hall (8 Gubkina)

Monodromy invariants of fibrations over projective spaces

Vik. S. Kulikov
Video records:
Real Video 205.1 Mb
Windows Media 214.8 Mb
Flash Video 346.9 Mb
MP4 346.9 Mb

Number of views:
This page:362
Video files:179
Youtube Video:

Vik. S. Kulikov
Photo Gallery

Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: One of the mane problems of geometry is to find discrete invariants distinguishing geometric objects up to some equivalence. In algebraic geometry, the classical approach, based on ideas of Riemann, Hurwitz, Lefschetz, consists of representations of complex algebraic manifolds either as finite coverings of the projective spaces (generic coverings) or as codimension one fibrations over the projective line (Lefschetz pencils). The monodromy, defined by circuits around the locus of critical values of such fibrations, defines completely these manifolds (as differentiable manifolds) and allows to hope that the invariants, connected with monodromy, defines completely these manifolds up to deformation of complex structures. Recently, Donaldson, Auroux, and Katzarkov generalized this approach to the case of four-dimensional symplectic manifolds in order to find invariants of symplectic structures on these manifolds.
In the talk, the basic directions of the development and results based on this approach to classification of algebraic and symplectic manifolds will be described.

SHARE: FaceBook Twitter Livejournal
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018