Forthcoming seminars
Seminar calendar
List of seminars
Archive by years
Register a seminar

Forthcoming seminars

You may need the following programs to see the files

Steklov Mathematical Institute Seminar
May 13, 2010 16:00, Moscow, Steklov Mathematical Institute of RAS, Conference Hall (8 Gubkina)

Ergodic properties of translation flows on flat surfaces

A. I. Bufetov
Video records:
Real Video 174.8 Mb
Windows Media 183.0 Mb
Flash Video 295.7 Mb
MP4 295.7 Mb

Number of views:
This page:830
Video files:386
Youtube Video:

A. I. Bufetov
Photo Gallery

Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: Consider a compact oriented surface without boundary endowed by a flat structure with trivial holonomy. Motion with unit speed in a given direction yields a globally defined translation flow on our surface.
Dynamical properties of such flows were apparently first investigated by A. G. Mayer in Nizhnii Novgorod in early 1940's. They have been an object of intense study since the 1960's, in particular, in a recent cycle of papers of M. Kontsevich and A. Zorich.
In this talk we will be interested in the asymptotic behaviour of ergodic integrals of translation flows. By the Masur–Veech Theorem (1982), for a generic abelian differential the corresponding flow is uniquely ergodic. The first main result of the talk, which extends earlier work of A. Zorich and G. Forni, is an asymptotic formula for ergodic integrals. The main object is a special finite-dimensional space of Hölder cocycles over flow trajectories. The asymptotic expansion implies limit theorems for these flows; limit distributions have compact support.
The proof is based on a symbolic representation of translation flows as suspension flows over Vershik's automorphisms, a construction similar to one given by S. Ito.
The main results of the talk are exposed in the preprint:

SHARE: FaceBook Twitter Livejournal
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018