RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Forthcoming seminars
Seminar calendar
List of seminars
Archive by years
Register a seminar

Search
RSS
Forthcoming seminars





You may need the following programs to see the files








Steklov Mathematical Institute Seminar
February 21, 2013 16:00, Moscow, Steklov Mathematical Institute of RAS, Conference Hall (8 Gubkina)
 


The Pontryagin maximum principle for an optimal control problem with a functional defined by an improper integral

S. M. Aseev
Video records:
Flash Video 480.4 Mb
Flash Video 2,877.4 Mb
MP4 480.4 Mb

Number of views:
This page:1572
Video files:335
Youtube Video:

S. M. Aseev
Photo Gallery


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке



Abstract: A normal form version of the Pontryagin maximum principle with an explicitly specified adjoint variable is proved for a class of infinite-horizon optimal control problems motivated by economic applications. The result is similar to the variant of the maximum principle for problems with dominating discount that was developed earlier in [1], [2] with the use of the method of finite-horizon approximations. The main novelty of the result is that it is proved under relaxed assumptions on the convergence of the integral utility functional. In particular, the result can be applied also for problems where the objective value may be infinite. In this case the notion of optimality of admissible control is specified in a special way. The proof of the result is based on application of classical needle variations technique.
It should be noted that earlier the needle variation technique was applied to developing the maximum principle for infinite-horizon problems in monograph “The mathematical theory of optimal processes” by L. S. Pontryagin, V. G. Boltyanskij, R. V. Gamkrelidze, and E. F. Mishchenko (Fizmatgiz, Moscow, 1961). Nevertheless, the direct application of this technique does not provide any additional characterizations of adjoint variables (such as normality of the problem and/or validity of some additional boundary conditions at infinity) although these issues play a central role in problems of this type.
The result is obtained in collaboration with Prof. V. M. Veliov (Vienna University of Technology, Austria) and published in [3], [4].

References
  1. S. M. Aseev, A. V. Kryazhimskii, “The Pontryagin maximum principle and transversality conditions for a class of optimal control problems with infinite time horizons”, SIAM J. Control Optim., 43:3 (2004), 1094–1119  crossref  mathscinet  zmath  scopus
  2. S. M. Aseev, A. V. Kryazhimskii, “Printsip maksimuma Pontryagina i zadachi optimalnogo ekonomicheskogo rosta”, Tr. MIAN, 257, 2007, 3–271  mathnet  mathnet  mathscinet; S. M. Aseev, A. V. Kryazhimskii, “The Pontryagin maximum principle and optimal economic growth problems”, Proc. Steklov Inst. Math., 257 (2007), 1–255  crossref  mathscinet  zmath  scopus
  3. S. M. Aseev, V. M. Veliov, “Maximum principle for infinite-horizon optimal control problems with dominating discount”, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 19:1-2 (2012), 43–63  mathscinet  zmath  scopus
  4. S. M. Aseev, V. M. Veliov, Needle variations in infinite-horizon optimal control, Research Report 2012-04, ORCOS, Vienna University of Technology, Vienna, 2012, 21 pp. 2012-04_Ase-VV_new.pdf  mathscinet


SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017