RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Forthcoming seminars
Seminar calendar
List of seminars
Archive by years
Register a seminar

Search
RSS
Forthcoming seminars





You may need the following programs to see the files








Seminar on Complex Analysis (Gonchar Seminar)
March 11, 2013 18:00, Moscow, Steklov Mathematical Institute, Room 411 (8 Gubkina)
 


Boundedness and invertibility for disrete Hilbert transform with sparse poles

Yu. S. Belov

St. Petersburg State University, Department of Mathematics and Mechanics

Number of views:
This page:143

Abstract: We are interested in the following question:
For which $v_n$ and $\mu$ a discrete Hilbert transform $H((a_n)) = \sum_n a_n*v_n/(z-t_n)$ is a bounded operator from $l^2(v_n)$ to $L^2(d\mu,C)$? For a fast growing $|t_n|$ we give necessary and sufficient conditions. These conditions are similar to a classical Muckenhoupt condition. Discrete Hilbert transform naturally appears in studies of spaces of entire functions with Riesz basis from reproducing kernels (Paley-Wiener spaces, de Branges spaces, weighted Fock spaces e.t.c.). In particular our results make it posssible to give a characterization of all Carleson measures (Bessel sequences) and all Riesz basis in "small" spaces of entire functions as well we will check Feichtinger hypothesis for such spaces (and reproducing kernels). (Joint work with K. Seip and T. Mengestie)

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017