RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 Forthcoming seminars Seminar calendar List of seminars Archive by years Register a seminar Search RSS Forthcoming seminars

You may need the following programs to see the files

Iskovskikh Seminar
March 14, 2013 18:00, Moscow, Steklov Mathematical Institute, room 540

Quotients of del Pezzo surfaces

A. S. Trepalin

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

1) If $X$ is a Del Pezzo surface, $X(\Bbbk) \neq \varnothing$, $K_X^2 \geq 5$, $G \subset \mathrm{Aut}(X)$, then $X / G$ — $\Bbbk$-rational.
2) If $X$ is a Del Pezzo surface, $X(\Bbbk) \neq \varnothing$, $K_X^2 = 4$, $G \subset \mathrm{Aut}(X)$, $G \neq \{1\}$, then $X / G$ — $\Bbbk$-rational.
3 If $X$ is a Del Pezzo surface, $X(\Bbbk) \neq \varnothing$, $K_X^2 = 3$, $G \subset \mathrm{Aut}(X)$, $G \neq \{1\}$, $C_3$, then $X / G$ — $\Bbbk$-rational.
4) If $X$ is a Del Pezzo surface, $X(\Bbbk)$ is dense, $K_X^2 =2$, $G \subset \mathrm{Aut}(X)$, $G \neq \{1\}$, $C_2$, $C_2^2$, $C_4$, $D_4$, $Q_8$, then $X / G$ — $\Bbbk$-rational.
5) If $X$ is a Del Pezzo surface, $X(\Bbbk)$ is dense, $K_X^2 =1$, $G \subset \mathrm{Aut}(X)$, $G \neq \{1\}$, $C_2$, $C_3$, $C_6$, $S_3$, then $X / G$ — $\Bbbk$-rational.