Forthcoming seminars
Seminar calendar
List of seminars
Archive by years
Register a seminar

Forthcoming seminars

You may need the following programs to see the files

Steklov Mathematical Institute Seminar
June 27, 2013 16:00, Moscow, MIAN, 8 Gubkina, aud. 430

Graphs on surfaces and algebraic curves

George B. Shabat
Video records:
Flash Video 449.0 Mb
Flash Video 2,690.5 Mb
MP4 449.0 Mb

Number of views:
This page:1290
Video files:775
Youtube Video:

George B. Shabat
Photo Gallery

Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: A graph, embedded into a compact oriented surface, defines (under certain conditions) a complex structure on this surface; sometimes the additional real parameters define families of complex structures. Several constructions of this kind are known; the simplest one is based on the metrized triangulations and serves as a discretization of the procedure of defining complex structure by a riemannian metric on a surface.
It will be shown in the talk, that all these constructions are covered by the Grothendieck's theory of dessins d'enfants and its generalizations. In the frames of this theory the curves over the algebraic curves over number fields are naturally distinguished; the absolute Galois group in $\mathrm{Aut}(\overline{\mathbb Q})$ arises as a group of “hidden” symmetries. Some examples of the correspondences between the combinatorial-topological and algebro-geometrical structures will be given — on the level of individual curves as well as from the viewpoint of the geometry of moduli spaces $\mathcal M_g(\overline{\mathbb Q})\subset\mathcal M_g(\mathbb C)$ of all the curves of a given genus. The relations of the dessins d'enfants theory with several domains of mathematics and physics will be mentioned.

SHARE: FaceBook Twitter Livejournal
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018