RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Forthcoming seminars
Seminar calendar
List of seminars
Archive by years
Register a seminar

Search
RSS
Forthcoming seminars





You may need the following programs to see the files








Colloquium of the Steklov Mathematical Institute of Russian Academy of Sciences
October 3, 2013 16:00, Moscow, Steklov Mathematical Institute of RAS, Conference Hall (8 Gubkina)
 


The Mandelbrot set and its cubic analog

V. A. Timorin
Video records:
Flash Video 3,464.3 Mb
Flash Video 578.2 Mb
MP4 578.2 Mb
Materials:
Adobe PDF 6.1 Mb

Number of views:
This page:937
Video files:350
Materials:132
Youtube Video:

V. A. Timorin
Photo Gallery


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке



Abstract: The Mandelbrot set is perhaps the most well known mathematical fractal outside of the mathematical community. This set describes how the dinamics of a quadratic polynomial $z^2+c$ varies with the complex parameter $c$. Just by looking at the location of $c$ relative to the Mandelbrot set, we can say a lot about the dynamical properties of $z^2+c$ (whereas having an explicit expression for $c$, say, $c=-1.5$, is by far less convenient). We will discuss the structure of the Mandelbrot set and, in particular, its (conjectural) topological model. If time permits, we may very briefly overview the new and active area of research dealing with the structure of the cubic Mandelbrot set.

Materials: miran_02_10_2013.pdf (6.1 Mb)

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017