RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Forthcoming seminars
Seminar calendar
List of seminars
Archive by years
Register a seminar

Search
RSS
Forthcoming seminars





You may need the following programs to see the files








Iskovskikh Seminar
October 17, 2013 18:30, Moscow, Steklov Mathematical Institute, room 540
 


Миша Вербицкий, "Пространство модулей поверхностей Энриквеса асферично", Андрей Солдатенков, "Пространство модулей кубических поверхностей".

M. S. Verbitsky, A. Soldatenkov

National Research University "Higher School of Economics"

Number of views:
This page:134

Abstract: Я расскажу о применении CAT-геометрии к задачам теории модулей. CAT-пространство есть геодезическое метрическое пространство с ограничениями на кривизну, полученными из условия сравнения треугольников. CAT-пространство с неположительной кривизной является асферическим (то есть его накрытие стягиваемо). Используя это соображение, Дэниел Оллкок (Daniel Allcock) доказал асферичность пространства модулей поверхостей Энриквеса. Я буду следовать статьям http://www.ma.utexas.edu/users/allcock/research/elattice.pdf The period lattice for Enriques surfaces http://www.ma.utexas.edu/users/allcock/research/branched.pdf Asphericity of moduli spaces via curvature
Андрей Солдатенков, "Пространство модулей кубических поверхностей".
Следуя работе Allcock, Carlson, Toledo "The complex hyperbolic geometry of the moduli space of cubic surfaces", я опишу пространство модулей кубических поверхностей в $\mathbb P^3$. Структура Ходжа на когомологиях кубической поверхности тривиальна и не несет никакой информации о поверхности. Но можно рассмотреть трехлистное накрытие $\mathbb P^3$, разветвленное в данной поверхности, получив при этом кубический трифолд в \mathbb P^4$. Для кубических трифолдов имеется теорема Торелли, доказанная Клеменсом и Гриффитсом, которая позволяет восстановить трифолд по поляризованной структуре Ходжа на третьих когомологиях. С помощью этой конструкции Аллкок, Карлсон и Толедо строят отображение периодов для маркированных кубических поверхностей, образом которого является дополнение к семейству гиперплоскостей в четырехмерном шаре. Я опишу данную конструкцию и постараюсь (насколько позволит время) доказать некоторые свойства отображения периодов.

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017