RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Forthcoming seminars
Seminar calendar
List of seminars
Archive by years
Register a seminar

Search
RSS
Forthcoming seminars





You may need the following programs to see the files








Steklov Mathematical Institute Seminar
June 19, 2014 16:00, Moscow, Steklov Mathematical Institute of RAS, Conference Hall (8 Gubkina)
 


Superstring theory for mathematicians

I. V. Volovich
Video records:
Flash Video 344.8 Mb
Flash Video 2,064.1 Mb
MP4 344.8 Mb

Number of views:
This page:2739
Video files:1007
Youtube Video:

I. V. Volovich
Photo Gallery


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке



Abstract: The key result of superstring theory will be formulated as an existence theorem. A definition of a model of superstring theory will be given by using properties of solutions of the two-dimensional wave equation and representation theory. The proof of the theorem is outlined that there exist at least 5 models of superstring theory, called type I, type IIA, type IIB, type HO and type HE string theories.
The spacetime (a Lorentzian manifold together with a timelike vector field) should be 10-dimensional and the gauge group SO(32) or $E_8\times E_8$.
All necessary notions will be defined in the talk.
Remarks:
It would be nice to have one unified theory. What is known about it? These 5 models of superstring theory are related by S-duality, which has an analogue in the Langlands program, and by T-duality, which is based on the mirror symmetry of cohomology of Calabi-Yau manifolds. There is a conjecture that each of the five types string theories become special cases of so called M-theory. Amazing AdS/CFT-correspondence is a holography relationship between superstring model of the type IIB on AdS_$5\times S^5$ and the conformal-invariant $N = 4$ supersymmetric Yang-Mills theory in the four-dimensional Minkowski spacetime.
Some mathematical topics in superstring theory: hypothesis of the absence of divergences in higher orders of perturbation theory; moduli of super Riemann surfaces; nonperturbative string field theory and a sum over topologies; quantum gravity and classification of Riemannian manifolds; cobordisms; $(\infty,n)$-category; holography.
Some other problems: black hole information paradox and firewalls; did the universe exist before the Big Bang; hypothesis oа quantum fluctuations of the number field.

References
  1. M. B. Green, J. H. Schwarz, E. Witten, Superstring theory, т. 1, 2, Cambridge University Press, 1987  zmath; M.B. Grin, Dzh. Shvarts, E. Vitten, Teoriya superstrun, т. 1, 2, 1990
  2. Hisham Sati, Urs Schreiber (eds.), Mathematical foundations of quantum field theory and perturbative string theory, Proceedings of Symposia in Pure Mathematics, 83, Amer. Math. Soc., Providence, RI, 2011, viii+354 pp.  mathscinet  zmath
  3. I.V. Volovich, “Number theory as the ultimate physical theory”, P-Adic Numbers, Ultrametric Anal. Appl., 2:1 (2010), 77–87  crossref  mathscinet  zmath
  4. I.V. Volovich, “Ot $p$-adicheskikh strun k etalnym”, Izbrannye voprosy matematicheskoi fiziki i analiza, Sbornik statei. K semidesyatiletiyu so dnya rozhdeniya akademika Vasiliya Sergeevicha Vladimirova, Tr. MIAN, 203, Nauka, M., 1994, 41–47, arXiv: hep-th/9608137  mathnet  mathscinet  zmath; I.V. Volovich, “From $p$-adic strings to étale strings”, Proc. Steklov Inst. Math., 203 (1995), 37–42  mathscinet
  5. I.Ya. Aref'eva, I.V. Volovich, “Quantization of the Riemann zeta-function and cosmology”, Int. J. Geom. Methods Mod. Phys., 4:5 (2007), 881–895, arXiv: hep-th/0701284  crossref  mathscinet  zmath  isi  scopus


SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017