RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Большой семинар кафедры теории вероятностей МГУ
12 марта 2008 г. 16:45, г. Москва, ГЗ МГУ, ауд. 16-24
 


Средние значения непрерывных функций на пространстве конфигураций

Б. М. Гуревич

Количество просмотров:
Эта страница:48

Аннотация: В 1934 г. А. Безикович рассмотрел вопрос о том, каков “размер” множества точек отрезка $[0,1]$, в двоичном разложении которых единица встречается с частотой $p$ (при $p=1/2$ лебегова мера этого множества равна нулю). Ответ, выраженный в терминах хаусдорфовой размерности, имеет вид $[p\ln p+(1-p)\ln(1-p)]/\ln2$. Этот вопрос является частным случаем проблемы вычисления так называемого мультифрактального спектра временных средних для непрерывной функции на пространстве последовательностей. В докладе будет рассказано о решении этой задачи для более общей ситуации, когда пространство последовательностей заменяется на пространство многомерных конфигураций, а скалярная функция – на векторную, а также о некоторых близких задачах и о том, какое отношение ко всему этому имеют идеи, пришедшие из статистической физики. Все новые результаты, о которых пойдет речь, получены совместно с А. А. Темпельманом.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017