Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Узлы и теория представлений
21 октября 2014 г. 18:30, г. Москва, ГЗ МГУ, ауд. 14-03
 


Об асимптотике числа специальных спайнов с $n$ вершинами и одной двумерной клеткой

И. Н. Шнурников

Московский государственный университет им. М. В. Ломоносова, механико-математический факультет

Количество просмотров:
Эта страница:67

Аннотация: Сложность трехмерного многообразия по Матвееву — это минимальное число вершин в специальном спайне многообразия. Есть несколько серий трехмерных многообразий с известной сложностью, одно из них — семейство $M_n$ ориентируемых гиперболических незамкнутых многообразий, имеющих специальный спайн с $n$ вершинами и одной двумерной клеткой.
Цель доклада — рассказать о свойствах многообразий этого семейства (по работе Фригерио, Мартелли и Петронио). В частности, многообразия семейства $M_n$ взаимно однозначно соответствуют ориентируемым специальным спайнам с одной двумерной клеткой и $n$ вершинами. С помощью этого можно оценить число многообразий из $M_n$. Мы обсудим оценки числа спайнов, которые можно получить, рассматривая некоторые удобные для подсчеты графы особенностей.
В перспективе можно будет попробовать оценить число специальных спайнов с $k$ двумерными клетками и $n$ вершинами.
Определение. Специальным спайном называется конечный связный двумерный клеточный комплекс, такой, что любая его вершина инцидентна 4 ребрам (с учетом кратностей), а каждое ребро инцидентно трем двумерным клеткам (с учетом кратностей). Регулярная окрестность внутренней точки ребра гомеоморфна “книжке с тремя страницами”, регулярная окрестность вершины гомеоморфна конусу над ребрами тетраэдра. Вершины и ребра образуют граф особенностей спайна.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021