RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Узлы и теория представлений
21 октября 2014 г. 18:30, г. Москва, ГЗ МГУ, ауд. 14-03
 


Об асимптотике числа специальных спайнов с $n$ вершинами и одной двумерной клеткой

И. Н. Шнурников

Московский государственный университет им. М. В. Ломоносова, механико-математический факультет

Количество просмотров:
Эта страница:33

Аннотация: Сложность трехмерного многообразия по Матвееву — это минимальное число вершин в специальном спайне многообразия. Есть несколько серий трехмерных многообразий с известной сложностью, одно из них — семейство $M_n$ ориентируемых гиперболических незамкнутых многообразий, имеющих специальный спайн с $n$ вершинами и одной двумерной клеткой.
Цель доклада — рассказать о свойствах многообразий этого семейства (по работе Фригерио, Мартелли и Петронио). В частности, многообразия семейства $M_n$ взаимно однозначно соответствуют ориентируемым специальным спайнам с одной двумерной клеткой и $n$ вершинами. С помощью этого можно оценить число многообразий из $M_n$. Мы обсудим оценки числа спайнов, которые можно получить, рассматривая некоторые удобные для подсчеты графы особенностей.
В перспективе можно будет попробовать оценить число специальных спайнов с $k$ двумерными клетками и $n$ вершинами.
Определение. Специальным спайном называется конечный связный двумерный клеточный комплекс, такой, что любая его вершина инцидентна 4 ребрам (с учетом кратностей), а каждое ребро инцидентно трем двумерным клеткам (с учетом кратностей). Регулярная окрестность внутренней точки ребра гомеоморфна “книжке с тремя страницами”, регулярная окрестность вершины гомеоморфна конусу над ребрами тетраэдра. Вершины и ребра образуют граф особенностей спайна.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017