RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Алгебраическая топология и её приложения. Семинар им. М. М. Постникова
14 октября 2014 г. 16:45–18:20, г. Москва, ГЗ МГУ, ауд. 16-08, вторник, 16:45–18:20
 


Теорема Аносова о числах Нильсена для нильмногообразий

В. М. Бухштаберabc, В. П. Лексинde

a Математический институт им. В. А. Стеклова Российской академии наук
b Московский государственный университет им. М. В. Ломоносова, механико-математический факультет
c Институт проблем передачи информации им. А. А. Харкевича РАН, г. Москва
d Московский государственный областной социально-гуманитарный институт, г. Коломна Московской обл.
e Коломенский государственный педагогический институт

Количество просмотров:
Эта страница:153

Аннотация: Для любого непрерывного отображения $f$ конечного клеточного комплекса $X$ можно определить два числа: $L(f)$ – число Лефшеца и $N(f)$ – число Нильсена, которые являются гомотопическими инвариантами. Оба числа тесно связаны с теорией неподвижных точек отображений. Число Лефшеца легче вычислить, а число Нильсена дает очевидную оценку снизу числа неподвижных отображения. Простые примеры показывают, что есть ситуации, когда число Нильсена равно модулю числа Лефшнца. Была поставлена задача: выяснить наиболее общие условия для совпадения чисела Нильсена и модуля числа Лефшеца. В докладе будет расказано о теореме Аносова, которая утверждает, что такое совпадение чисел имеет место для компактных нильмногообразий. Затем будет дан обзор других результатов о совпадении.
Все необходимые понятия будут определены, а необходимые и используемые результаты сформулированы.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020