RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Семинар «Глобус» (записи с 2011 года)
4 декабря 2014 г. 15:40, г. Москва, конференц-зал НМУ (Москва, Большой Власьевский пер., 11)
 


The ternary Goldbach conjecture

H. A. Helfgott

Количество просмотров:
Эта страница:86

Аннотация: The ternary Goldbach conjecture (1742) asserts that every odd number greater than 5 can be written as the sum of three prime numbers. Following the pioneering work of Hardy and Littlewood, Vinogradov proved (1937) that every odd number larger than a constant C satisfies the conjecture. In the years since then, there has been a succession of results reducing C, but only to levels much too high for a verification by computer up to C to be possible (C>10^1300). (Works by Ramare and Tao solved the corresponding problems for six and five prime numbers instead of three.) My recent work proves the conjecture. We will go over the main ideas of the proof.
Доклад пройдёт в рамках конференции "Zeta Functions 5".

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017