RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Семинар «Глобус» (записи с 2011 года)
18 декабря 2014 г. 15:40, г. Москва, конференц-зал НМУ (Москва, Большой Власьевский пер., 11)
 


Пометки диаграмм Дынкина и когомологии Галуа односвязных вещественных групп

М. В. Боровой

Tel Aviv University, School of Mathematical Sciences

Количество просмотров:
Эта страница:57

Аннотация: Пометкой (labeling) конечного графа D называется набор числовых меток $a_i$, равных 0 или 1, где i пробегает множество вершин графа D. Мы говорим, что вершины i и j - соседние, если они соединены ребром. Мы определяем элементарное преобразование $T_i$ множества пометок графа следующим образом: $T_i$ не меняет $a_j$ для вершин j отличных от i, а к числовой метке $a_i$ оно прибавляет (по модулю 2) сумму меток $a_k$ по всем вершинам k соседним с i. Мы говорим, что две пометки графа D эквивалентны, если от одной из них можно перейти к другой посредством цепочки элементарных преобразований. На первом часу доклада я собираюсь описать классы эквивалентности пометок для важного класса графов: для диаграмм Дынкина.
На втором часу я расскажу про задачу вычисления множества когомологий Галуа H^1(R,G) односвязной простой вещественной алгебраической группы G. Количество элементов этого конечного множества с отмеченной точкой вычислил Джеффри Адамс в препринте 2013 года, опираясь на результаты докладчика 1988 года. Для некоторых приложений недостаточно знать только количество элементов. Оказывается, что если G - компактная, односвязная, простая алгебраическая группа над полем R вещественных чисел, то множество ее когомологий Галуа $H^1(R,G)$ - это в точности множество классов эквивалентности пометок диаграммы Дынкина D группы G. Таким образом, используя пометки диаграмм Дынкина, мы даем явное функториальное описание множества с отмеченной точкой $H^1(R,G)$.
Когомологии Галуа естественно появляются в задаче классификации тензоров данного типа над R (например, пар квадратичных форм) с точностью до замены координат. Множество вещественных тензоров, эквивалентных над полем комплексных чисел данному тензору t, разбивается на конечное число классов эквивалентности над R, и эти классы эквивалентности соответствуют элементам ядра отображения

$$ H^1(R, H) —> H^1(R, G),$$

где H - некоторая R-подгруппа некоторой R-группы G. Если G и H - односвязные группы, мы можем вычислить это ядро, используя пометки диаграмм Дынкина.
Это совместная работа с Цахи Эвенором (Zachi Evenor). От слушателей не предполагается никаких предварительных знаний об алгебраических группах и когомологиях Галуа.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017