RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Узлы и теория представлений
3 марта 2015 г. 18:30, г. Москва, ГЗ МГУ, ауд. 14-03
 


Адиабатический предел в уравнениях Гинзбурга–Ландау и Зайберга–Виттена

А. Г. Сергеевab

a Математический институт им. В. А. Стеклова Российской академии наук
b Московский государственный университет имени М. В. Ломоносова, механико-математический факультет

Количество просмотров:
Эта страница:85

Аннотация: В работах 1994-го года Зайберг и Виттен предложили новый вид инвариантов симплектических 4-мерных многообразий, которые строятся, исходя из предложенных ими уравнений, называемых ныне уравнениями Зайберга–Виттена. Оказалось, что эти новые инварианты тесно связаны с инвариантами Громова указанных многообразий, считающими число псевдоголоморфных кривых в заданном классе гомологий. Таубс даже предложил мнемоническое «уравнение»: $Gr=SW$, выражающее простую связь между инвариантами Зайберга–Виттена и Громова симплектического 4-мерного многообразия. В основе этого «уравнения» лежит замечательная конструкция, сопоставляющая решению уравнений Зайберга–Виттена псевдоголоморфную кривую, возникающую в так называемом адиабатическом пределе указанных уравнений.
У этой конструкции имеется и нетривиальный 3-мерный аналог, связанный с адиабатическим пределом в гиперболических уравнениях Гинзбурга–Ландау. Более того, адиабатический предел в уравнениях Зайберга–Виттена можно рассматривать как комплексную версию адиабатического предела в гиперболических уравнениях Гинзбурга–Ландау.
Двумерная редукция этих уравнений приводит к статическим уравнениям Гинзбурга–Ландау, называемым иначе вихревыми. Динамические уравнения Гинзбурга–Ландау не инвариантны относительно изменения масштаба, поэтому для того, чтобы получить из этих уравнений интересующую нас информацию, необходимо перейти в них к пределу, устремляя масштабный параметр к бесконечности. При переходе к указанному пределу необходимо также одновременно изменять масштаб времени, вводя т.н. «медленное время». Подобный предел и называется адиабатическим. Уравнения Гинзбурга–Ландау в этом пределе превращаются в адиабатические уравнения. Их решения, называемые адиабатическими траекториями, задаются геодезическими на пространстве модулей вихревых решений в метрике, порождаемой функционалом кинетической энергии.
В случае уравнений Зайберга–Виттена на компактном 4-мерном симплектическом многообразии адиабатический предел дает псевдоголоморфную кривую, которую можно рассматривать как комплексный аналог адиабатической траектории. Параметр вдоль этой предельной кривой играет роль «комплексного времени». В указанном пределе уравнения Зайберга–Виттена редуцируются к семейству вихревых уравнений, заданных в нормальных плоскостях к предельной псевдоголоморфной кривой. Предельная кривая и заданное на ней семейство вихревых решений должны удовлетворять адиабатическому уравнению, являющемуся комплексным аналогом адиабатического уравнения в 3-мерным случае.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017