RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Узлы и теория представлений
5 мая 2015 г. 18:30, г. Москва, ГЗ МГУ, ауд. 14-03
 


Links in $S_{g} \times S^{1}$ and invariants derived from their liftings

Seongjeong Kim

Количество просмотров:
Эта страница:42

Аннотация: Virtual links can be considered as links in a thickened surface $S_{g} \times I$. The three dimensional topology of the ambient space $S_{g} \times I$ plays important role for virtual links theory. Now, we studied links in $S_{g} \times S^{1}$. The ambient space has a topology from the $S^{1}$ instead of $I$. Moreover, it can be connected to usual virtual links by the lifting of the knots in $S_{g} \times S^{1}$ along the projection map $p$ from $S_{g} \times \mathbb{R}$ to $S_{g} \times S^{1}$. By lifting them along $p$, we get a link in $S_{g} \times S^{1}$ with infinite components or a string link with $n$-components. In this talk, we will introduce the diagram for links in $S_{g} \times S^{1}$ and the moves for the diagrams. We show that it is sufficient to study the diagrams for studying links in $S_{g} \times S^{1}$. And we will introduce an invariant for string links and links. Finally, we apply the invariant to knots in $S_{g} \times S^{1}$ to define an invariant for them.

Язык доклада: английский

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020