Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Узлы и теория представлений
5 мая 2015 г. 18:30, г. Москва, ГЗ МГУ, ауд. 14-03
 


Links in $S_{g} \times S^{1}$ and invariants derived from their liftings

Seongjeong Kim

Количество просмотров:
Эта страница:44

Аннотация: Virtual links can be considered as links in a thickened surface $S_{g} \times I$. The three dimensional topology of the ambient space $S_{g} \times I$ plays important role for virtual links theory. Now, we studied links in $S_{g} \times S^{1}$. The ambient space has a topology from the $S^{1}$ instead of $I$. Moreover, it can be connected to usual virtual links by the lifting of the knots in $S_{g} \times S^{1}$ along the projection map $p$ from $S_{g} \times \mathbb{R}$ to $S_{g} \times S^{1}$. By lifting them along $p$, we get a link in $S_{g} \times S^{1}$ with infinite components or a string link with $n$-components. In this talk, we will introduce the diagram for links in $S_{g} \times S^{1}$ and the moves for the diagrams. We show that it is sufficient to study the diagrams for studying links in $S_{g} \times S^{1}$. And we will introduce an invariant for string links and links. Finally, we apply the invariant to knots in $S_{g} \times S^{1}$ to define an invariant for them.

Язык доклада: английский

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021