RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Семинар по арифметической алгебраической геометрии
3 апреля 2007 г. 11:30, г. Москва, МИАН, комн. 540 (ул. Губкина, 8)
 


Логарифмический функционал и символы Вейля–Паршина

А. Г. Хованский

Количество просмотров:
Эта страница:178

Аннотация: Вейль с парой мероморфных функций $f$, $g$ и точкой $a$ на алгебраической кривой $M$ связал комплексное число – символ $[f,g]_a$, и показал, что произведение символов по всем точкам кривой равно единице (произведение имеет смысл, так как символ отличен от единицы лишь в конечном числе точек). Бейлинсон построил класс когомологий, объясняющий теорему Вейля топологически. Паршин нашел многомерное обобщение теоремы Вейля. Брилинский построил класс когомологий, дающий топологическое объяснение теоремы Паршина. Рассуждения Бейлинсона просты и прозрачны, но не видно, как их обобщить на многомерный случай. Рассуждения Брилинского основаны на тяжеловесных конструкциях теории пучков и совсем не наглядны. Я расскажу о логарифмическом функционале, обобщающем обычную логарифмическую функции и наследующем ее мультипликативные свойства. Этот функционал прост (как логарифмическая функция) и дает другое обоснование топологических рассуждений Бейлинсона и Брилинского.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018