RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Общеинститутский семинар «Математика и ее приложения» Математического института им. В.А. Стеклова Российской академии наук
16 октября 2003 г., г. Москва, конференц-зал МИАН (ул. Губкина, 8)
 


О различных видах сходимости тригонометрических рядов

П. Л. Ульянов

Количество просмотров:
Эта страница:142

Аннотация: Дан краткий обзор некоторых результатов, касающихся сходимости тригонометрических рядов Фурье (С. Н. Бернштейн, Э. Фредгольм, О. Сас, С. Б. Стечкин, П. Л. Ульянов и другие авторы). Для случая равномерной сходимости тригонометрических рядов и их сопряженных рядов приведено неусиляемое условие через модули непрерывности в метрике $L_p(0,2\pi)$ с $p\in(1,\infty]$, которое имеет совсем другой тип, чем известное условие Дини–Липшица.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018