RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Общеинститутский семинар «Математика и ее приложения» Математического института им. В.А. Стеклова Российской академии наук
15 ноября 2001 г., г. Москва, конференц-зал МИАН (ул. Губкина, 8)
 


Общие накрытия плоскости

Вик. С. Куликов

Количество просмотров:
Эта страница:105

Аннотация: Как известно, для неособой проективной поверхности $S$, вложенной в проективное пространство $\mathbb{CP}^r$, ограничение $f$ на $S$ линейной проекции $\operatorname{pr}\colon\mathbb{CP}^r\to\mathbb{CP}^2$, общей по отношению к $S$, обладает следующими свойствами:
1) $f$ является конечным морфизмом степени $d=\deg S$;
2) дискриминантная кривая (кривая ветвления) $B\subset\mathbb{CP}^2$ является неприводимой каспидальной кривой;
3) для общей точки $p\in B$ число прообразов $#f^{-1}(p)=d-1$.
Общее накрытие проективной плоскости $\mathbb{CP}^2$, являющееся естественным обобщением понятия общей линейной проекции, – это морфизм $f\colon S\to\mathbb{CP}^2$ неособой поверхности $S$, для которой выполнены свойства 1)–3).
Гипотеза Кизини (Chisini) утверждает, что общее накрытие $f\colon S\to\mathbb{CP}^2$ степени $\deg f\ge5$ однозначно определяется своей дискриминантной кривой.
В первой части доклада дан набросок доказательства гипотезы Кизини (а также ее некоторого обобщения) для почти всех общих накрытий плоскости. Вторая часть доклада посвящена обсуждению возможности использования брэйд-монодромных инвариантов дискриминантной кривой общего накрытия $f\colon S\to\mathbb{CP}^2$ в качестве полного набора дискретных инвариантов, определяющих симплектическую структуру на подлежащем четырехмерном вещественном многообразии $S_R$.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018