RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Заседания Московского математического общества
1 декабря 2015 г., г. Москва, ГЗ МГУ, аудитория 16-10
 

Студенческие чтения


Поверхности, через каждую точку которых проходит две окружности, лежащих на поверхности

М. Б. Скопенков

Количество просмотров:
Эта страница:119

Аннотация: (По совместной работе с Р.Красаускасом и А.Пахаревым)
Мы находим все поверхности в трехмерном евклидовом пространстве, через каждую точку которых проходят две трансверсальные дуги окружностей, лежащие на поверхности. Это задача, которая просто обязана быть решена математиками, так она имеет естественную формулировку и очевидные приложения в архитектуре.
Однако долгое время она оставалась открытой, несмотря на частичные продвижения, начиная еще с работ Дарбу 19-го века. Предлагаемое решение основано на сведении к красивой алгебраической задаче описания пифагоровых $n$-ок многочленов, которая решается с помощью нового метода разложения кватернионных многочленов на множители.
Значительная часть доклада элементарна и доступна студентам и школьникам. Многие примеры иллюстрируются красивыми рисунками. Будет сформулировано несколько нерешенных проблем.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017