RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Узлы и теория представлений
8 декабря 2015 г. 18:30, г. Москва, ГЗ МГУ, ауд. 14-03
 


Дискретные группы отражений и группы Кокстера

Э. Б. Винберг

Московский государственный университет имени М. В. Ломоносова, механико-математический факультет

Количество просмотров:
Эта страница:55

Аннотация: Пусть $X$ — пространство постоянной кривизны, т.е. евклидово пространство $E^n$, сфера $S^n$ или пространство Лобачевского $L^n$. Выпуклый многогранник $P\subset X$ называется многогранником Кокстера, если все его двугранные углы имеют вид $\pi/k$, где $k$ — целое число. В этом случае группа $G$ движений пространства $X$, порожденная отражениями относительно стенок многогранника $P$, является дискретной группой движений, и многогранник $P$ является ее фундаментальной областью. Обратно, всякая дискретная группа движений пространства $X$, порожденная отражениями относительно гиперплоскостей (коротко - дискретная группа отражений), получается таким образом. Определяющие соотношения группы $G$ таковы: квадрат каждой образующей и некоторые степени произведений пар различных образующих равны единице (показатели степеней определяются соответствующими двугранными углами). Абстрактные группы, задаваемые определяющими соотношениями такого вида, называются группами Кокстера. Дискретные группы отражений в $E^n$ и $S^n$ были классификацированы Кокстером (1935). Полной классификации дискретных групп отражений в $L^n$ до сих пор не получено. Любая абстрактная группа Кокстера $G$ с $n$ образующими имеет каноническое точное $n$-мерное линейное представление, при котором образующие переходят в линейные отражения и группа $G$ дискретно действует в некоторм открытом выпуклом конусе (конусе Титса). Это решает, в частности, проблему тождества слов в группах Кокстера. Имеется также чисто алгебраическое решение этой проблемы, полученное Титсем (1966). В докладе будут приведены также некоторые результаты о более общих абстрактных группах, задаваемых периодическими попарными соотношениями

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017