RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Семинар отдела математической физики МИАН
21 января 2016 г. 11:00, г. Москва, МИАН, комн. 430 (ул. Губкина, 8)
 


Общая теория граничных задач для дифференциальных уравнений с частными производными: базисные результаты и дальнейшие продвижения

В. П. Бурский

Количество просмотров:
Эта страница:75

Аннотация: В ограниченной области с гладкой границей рассмотрены общие дифференциальные уравнения без типа с гладкими коэффициентами и граничные задачи для них. Излагаются построения Вишика с дополнениями Хермандера теории расширений, интерпретируемых как однородные граничные задачи, вместе с основными фактами теории, а также возможности обобщений. Рассматриваются граничные свойства функций из области определения максимального и минимального расширений, существование и описание корректных граничных задач, сравнение дифференциальных операторов, существование фундаментальных решений, обобщенно поставленные граничные задачи и их применения в теории расширений.

Список литературы
  1. В. П. Бурский, “О граничных свойствах решений дифференциальных уравнений и общих граничных задачах”, Тр. ММО, 68, 2007, 185–225


ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017