RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Заседания Московского математического общества
29 марта 2016 г., г. Москва, ГЗ МГУ, аудитория 16-10
 


Прямоугольные диаграммы и выпуклые поверхности в смысле Жиру

М. В. Прасолов

Количество просмотров:
Эта страница:98

Аннотация: Прямоугольные диаграммы можно рассматривать как специальный класс плоских диаграмм зацеплений. Каждое зацепление представимо прямоугольной диаграммой, и верен аналог теоремы Райдемайстера о связи двух прямоугольных диаграмм эквивалентных зацеплений с помощью набора элементарных движений.
На прямоугольных диаграммах естественно вводится функция сложности, для которой, как показал И.Дынников в 2006 г., тривиальный узел распознается с помощью монотонного упрощения. Это значит, что любая прямоугольная диаграмма тривиального узла может быть приведена к самой простой лишь элементарными движениями, не увеличивающими сложность.
Прямоугольными диаграммами очень удобно также представлять лежандровы зацепления, то есть касающиеся распределения плоскостей $\ker(dz+x dy)$ в $\mathbb R^3$. Как показано в недавней совместной работе И.Дынникова и докладчика, распространение процедуры монотонного упрощения на произвольные зацепления тесно связано с классификацией лежандровых зацеплений данного топологического типа.
Один из основных инструментов маломерной контактной топологии и, в частности, теории лежандровых узлов — это выпуклые поверхности в смысле Жиру. Как замечено И.Дынниковым и докладчиком, для описания выпуклых поверхностей в $\mathbb R^3$ также походит «прямоугольный» язык. С помощью аналога прямоугольных диаграмм для поверхностей мы надеемся научиться различать лежандровы узлы, которые не удается пока различить никакими алгебраическими инвариантами.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017