RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Общеинститутский математический семинар Санкт-Петербургского отделения Математического института им. В. А. Стеклова РАН
24 декабря 2001 г., г. Санкт-Петербург, ПОМИ, комн. 311 (наб. р. Фонтанки, 27)
 


Критические решеточные модели и конформная инвариантность

Станислав Смирнов

Королевский технологический институт и Королевская академия наук, Стокгольм

Количество просмотров:
Эта страница:178

Аннотация: Физики смогли предсказать много свойств критических моделей на плоских решетках: просачивания, самоизбегающего случайного блуждания, модели Изинга, …Например, что количество различных простых блужданий длины $N$ на любой регулярной плоской решетке растет как $M^N N^{11/32}$, где $M$ зависит от решетки, тогда как констатнта 11/32 универсальна! Похожие рациональные числа появляются и в других моделях: размерность критического кластера просачивания — 91/48, а размерность внешней границы броуновской кривой — 4/3. В последнее время существенно улучшилось математическое понимание этих моделей и их предполагаемой конформной инвариантности, которая играет центральную роль в определении рапзмерностей.
Мы опишем упомянутые модели и расскажем о недавних работах Лоулера, Шрамма, Вернера и докладчика, которые привели к доказательству некоторых упомянутых предсказаний.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018