RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Узлы и теория представлений
17 мая 2016 г. 18:30, г. Москва, ГЗ МГУ, ауд. 14-03
 


Комбинаторика триангулированных многообразий

А. А. Айзенберг

Московский государственный университет имени М. В. Ломоносова, механико-математический факультет

Количество просмотров:
Эта страница:28

Аннотация: Каждому симплициальному комплексу можно сопоставить его $f$-вектор, то есть набор (число вершин, число ребер, число 2-граней, и т.д.). Естественная комбинаторная задача: описать все возможные $f$-векторы триангуляций заданного многообразия, или хотя бы описать некоторые их свойства.
Вместо $f$-вектора удобнее использовать $h$-вектор, несущий ту же информацию о комбинаторике триангуляции. В 70-х годах появилась теория алгебр Стенли–Райснера, позволившая перевести исходную комбинаторно-топологическую задачу на алгебраический язык. Наиболее впечатляющие результаты эта теория дала для триангулированных сфер. Алгебраическая теория для триангуляций произвольных многообразий оказалась более сложной и обрела относительно законченный вид в работах Новик и Шварца 2009-го года. Они построили фактор-алгебру алгебры Стенли–Райснера триангулированного многообразия, являющуюся алгеброй с двойственностью Пуанкаре, и выразили размерности ее градуированных компонент через $h$-вектор и числа Бетти многообразия.
В докладе я расскажу об этой теории более подробно и, насколько позволит время, объясню топологию и геометрию, стоящую за алгебрами Новик-Шварца.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017