Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Узлы и теория представлений
24 мая 2016 г. 18:30, г. Москва, ГЗ МГУ, ауд. 14-03
 


Бесконечно транзитивные действия групп

А. Ю. Ольшанскийab

a Vanderbilt University, Nashville, Tennessee
b Московский государственный университет имени М. В. Ломоносова, механико-математический факультет

Количество просмотров:
Эта страница:118

Аннотация: Напомним, что действие группы $G$ на множестве $X$ (справа) называется транзитивным, если для любых $x,y$ из $X$ найдется $g\in G$, такой что $xg=y$. Действие $k$-транзитивно при $k\ge 1$, если в $X$ не менее $k$ точек, и для любых двух наборов попарно различных точек $(x_1,\ldots,x_k)$ и $(y_1,\ldots,y_k)$ существует $g\in G$ со свойством $ x_1 g=y_1,\ldots, x_k g = y_k$. Например, группа аффинных (проективных) преобразований прямой дважды (соотв., трижды) транзитивна. Наконец, действие бесконечно транзитивно, если оно $k$-транзитивно для всякого натурального $k$. Очевидным примером является естеcтвенное действие бесконечной симметрической группы. Оказывается однако, что многие конечно-порожденные группы, такие как свободные, гиперболические и др. допускают точные бесконечно транзитивные действия.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021