RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Межкафедральный семинар МФТИ по дискретной математике
17 марта 2016 г. 18:30, г. Долгопрудный, Большая химическая аудитория Лабораторного корпуса МФТИ
 


Extremal results for Berge-hypergraphs

D. Gerbner

Количество просмотров:
Эта страница:19

Аннотация: Joint work with Cory Palmer Let G be a graph and \mathcal{H} be a hypergraph both on the same vertex set. We say that \mathcal{H} is a Berge-G if there is a bijection f : E(G) -> E(\mathcal{H}) such that for e \in E(G) we have e \subset f(e). This generalizes the established definitions of «Berge path» and «Berge cycle» to general graphs. For a fixed graph G we examine the maximum possible size (i.e. the sum of the cardinality of each edge) of a hypergraph with no Berge-G as a subhypergraph. In the present talk we prove general bounds for this maximum when G is an arbitrary graph. We also consider the specific case when G is a complete bipartite graph and prove an analogue of the Kővári-Sós-Turán theorem.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020