Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Ближайшие семинары

Современные проблемы теории чисел
2 июня 2016 г. 13:00, г. Москва, МИАН, комн. 530 (ул. Губкина, 8)

p-adic analyticity, powerful and smooth moduli and strong subconvexity

Djordje Milicevicab

a Max Planck Institute for Mathematics
b Bryn Mawr College

Количество просмотров:
Эта страница:91

Аннотация: Divisor problem, distribution of primes in arithmetic progressions, or, say, equidistribution of rational points on varieties - all cornerstone problems in analytic number theory - can see their complexity rise in several directions, including the "level aspect", in which the modulus is increasing. Within it, the so-called "depth" and "smooth" aspects, where the modulus is highly powerful or well-factorable, respectively, play a distinctive role, with tools often paralleling those available in the archimedean direction. In this talk, we will discuss several manifestations of this phenomenon. In particular, we will present our recent subconvexity bound for the central value of a Dirichlet L-function of a character to a prime power modulus, which breaks a long-standing barrier known as the Weyl exponent. To this end, we develop a general method to estimate short exponential sums involving p-adically analytic fluctuations, which can be naturally seen as a p-adic analogue of the method of exponent pairs. Natural analogues of the circle method and large sieve-type inequalities and their consequences for subconvexity and moments of L-functions (joint work with Blomer) will also be mentioned.

Язык доклада: английский

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021