RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Межкафедральный семинар МФТИ по дискретной математике
7 октября 2015 г., г. Долгопрудный, МФТИ, Корпус Прикладной Математики, 115
 


Аналоги задачи о справедливом разделе ресурсов

Ф. С. Стонякин

Количество просмотров:
Эта страница:33

Аннотация: Хорошо известны задачи о справедливом разделе сокровищ (ресурсов), связанные с теорией меры. В классических задачах такого типа делимый объект обозначают как множество A, а части – как некоторую систему подмножеств. Предполагается, что каждый субъект оценивает части А с помощью некоторой безатомной меры. Разрешимость такого рода задач, как правило, в той или иной степени связана с теоремой Ляпунова о выпуклости образа безатомных векторных мер. Однако такие подходы неудобны в некоторых ситуациях. Например, если рассмотреть ситуацию пренебрежения малыми величинами. В таком случае можно выделить класс достаточно малых подмножеств и приписать им нулевую оценку. Но объединение нескольких малых множеств может быть уже не малым и иметь ненулевую оценку. Иными словами, функция оценки множеств может быть неаддитивной и терять свойство безатомности. В этой связи мы вводим неаддитивные аналоги понятия меры множества, которые моделируют описанную выше ситуацию. Исследованы свойства этих аналогов мер, получен аналог теоремы Ляпунова о выпуклости в специальной форме. На базе этих понятий рассмотрены соответствующие задачи о разделе ресурсов и доказаны результаты об их разрешимости. Обсуждаются бесконечномерные аналоги задачи о разделе ресурсов, моделирующие сближение бесконечного числа критериев на специальных разбиениях исходного множества.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020