RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Общеинститутский семинар «Коллоквиум МИАН»
1 сентября 2016 г. 16:00, г. Москва, конференц-зал МИАН (ул. Губкина, 8)
 


Функциональная предельная теорема для детерминантного синус-процесса

А. В. Дымов
Видеозаписи:
Flash Video 609.1 Mb
Flash Video 3,630.6 Mb
MP4 609.1 Mb

Количество просмотров:
Эта страница:610
Видеофайлы:234
Youtube Video:

А. В. Дымов
Фотогалерея


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке



Аннотация: Детерминантные (фермионные) случайные точечные процессы естественным образом возникают в физике и различных областях математики. В частности, они играют центральную роль в теории случайных матриц. Несмотря на то, что последние два десятилетия детерминантные процессы являлись объектом пристального изучения, их динамические свойства поняты не слишком хорошо. Так, Костин и Лебовиц, а затем Сошников, доказали, что широкий класс детерминантных процессов удовлетворяет центральной предельной теореме. Известно, что для многих динамических систем, удовлетворяющих ЦПТ, также выполнен принцип универсальности Донскера (функциональная центральная предельная теорема, ФЦПТ). Последний утверждает, что траектории системы, в некотором смысле, могут быть приближены траекториями броуновского движения. Однако, про поведение траекторий детерминантных процессов не известно ничего.
В первой части доклада я расскажу, что такое детерминантные процессы и где они возникают. Во второй части я напомню классическую ФЦПТ и объясню результаты моей совместной с А. Буфетовым работы, где мы получаем ее аналог для одного из важнейших представителей детерминантных процессов: синус-процесса. Оказывается, что ничего похожего на броуновское движение в этом случае не возникает, однако появляется гауссовский процесс совершенно иного поведения.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018